10.12 Converting between Types (cont.)

« The return type of an overloaded cast operator function is
Implicitly the type to which the object is being converted.

« If s isaclass object, when the compiler sees the expression

static_cast< char * >(s ), the compiler generates
the call

« s.operator char *()

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



10.12 Converting between Types (cont.)

Overloaded Cast Operator Functions

* Overloaded cast operator functions can be defined to
convert objects of user-defined types into fundamental types
or into objects of other user-defined types.

Implicit Calls to Cast Operators and Conversion
Constructors

* One of the nice features of cast operators and conversion
constructors Is that, when necessary, the compiler can call
these functions /mplicitly to create temporary objects.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



Software Engineering Observation 10.5

When a conversion constructor or conversion operator is
used to perform an implicit conversion, C++ can apply
only one implicit constructor or operator function call
(i.e., a single user-defined conversion) to try to match the
needs of another overloaded operator. The compiler will
not satisfy an overloaded operator’s needs by performing
a series of implicit, user-defined conversions.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



10.13 explicit Constructors and
Conversion Operators

Recall that we’ve been declaring as explicit every constructor that can
be called with one argument.

With the exception of copy constructors, any constructor that can be
called with a single argument and is not declared explicit can be used
by the compiler to perform an /mplicit conversion.

The conversion is automatic and you need not use a cast operator.
In some situations, implicit conversions are unaesirable or error-prone.

For example, our Array class in Fig. 10.10 defines a constructor that
takes a single 1nt argument.

The intent of this constructor is to create an Array object containing
the number of elements specified by the 1nt argument

However, if this constructor were not declared exp11c1t it could be
misused by the compiler to perform an /implicit conversion.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



%

Common Programming Error 10.6

Unfortunately, the compiler might use implicit
conversions in cases that you do not expect, resulting in
ambiguous expressions that generate compilation errors
or result in execution-time logic errors.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



10.13 explicit Constructors and
Conversion Operators (cont.)

* The program (Fig. 10.12) uses the Array class of
Figs. 10.10-10.11 to demonstrate an improper implicit
conversion.

« Line 13 calls function outputArray with the 1nt value
3 as an argument.

* This program does not contain a function called
outputArray that takes an 1nt argument.

— The compiler determines whether class Array provides a
conversion constructor that can convert an 1nt into an Array.

— The compiler assumes the Array constructor that receives a single
1nt is a conversion constructor and uses it to convert the argument
3 into a temporary Array object that contains three elements.

— Then, the compiler passes the temporary Array object to function
outputArray to output the Array’s contents.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



OoOo~NOTUBNDAE WN=

10
11
12
13
14
15
16
17
18
19
20
21

// Fig. 10.12: figl0_12.cpp

// Single-argument constructors and implicit conversions.
#include <iostream>

#include

using namespace std;

void outputArray( const Array & ); // prototype

int main()
{

Array 1integersl( ); // 7-element Array

outputArray( integersl ); // output Array integersl

outputArray( 2 ); // convert 3 to an Array and output Array’s contents
} // end main

// print Array contents
void outputArray( const Array &arrayToOutput )
{
cout << << arrayToOutput.getSize()
<< << arrayToQutput << endl;
} // end outputArray

Fig. 10.12 | Single-argument constructors and implicit conversions. (Part | of

2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



The Array received has 7 elements. The contents are:
0 0 0 0
0 0 0

The Array received has 3 elements. The contents are:
0 0 0

Fig. 10.12 | Single-argument constructors and implicit conversions. (Part 2 of
2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



10.13 explicit Constructors and
Conversion Operators (cont.)

Preventing Implicit Conversions with Single-Argument
Constructors

* The reason we’ve been declaring every single-argument constructor
preceded by the keyword explicit Isto suppress implicit
CONVErSIons via conversion constructors when such conversions
should not be allowed.

« A constructor that is declared exp 11 c1t cannot be used in an
implicit conversion.

* In the example if Figure 10.13, we use the original version of
Array.h from Fig. 10.10, which included the keyword
exp 11 c1t inthe declaration of the single-arqument constructor in
line 14.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



10.13 explicit Constructors and
Conversion Operators (cont.)

Figure 10.13 presents a slightly modified
version of the program in Fig. 10.12.

When this program is compiled, the compiler
produces an error message indicating that the
Integer value passed to outputArray in line
13 cannot be converted to a const Array &.

The compiler error message (from Visual C++)
IS shown In the output window.

Line 14 demonstrates how the explicit
constructor can be used to create a temporary
Array of 3 elements:and pass it to function



% Error-Prevention Tip 10.4
@

Always use the exp11icit keyword on single-argument
constructors unless they’re intended to be used as
conversion constructors.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



OoOo~NOTUBNDAE WN=

10
11
12
13
14
15
16
17
18
19
20
21
22

// Fig. 10.13: figl0_13.cpp

// Demonstrating an explicit constructor.
#include <iostream>

#include

using namespace std;

void outputArray( const Array & ); // prototype

int main()
{
Array 1integersl( ); // 7-element Array
outputArray( integersl ); // output Array integersl
outputArray( 2 ); // convert 3 to an Array and output Array’s contents
outputArray( Array( ) ); // explicit single-argument constructor call
} // end main

// print Array contents
void outputArray( const Array &arrayToOutput )
{
cout << << arrayToQutput.getSize()
<< << arrayToQutput << endl;
} // end outputArray

Fig. 10.13 | Demonstrating an exp1icit constructor. (Part | of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



c:\books\2012\cpphtp9\examples\chl10\figl0_13\figl0_13.cpp(13): error C2664:
'outputArray' : cannot convert parameter 1 from 'int' to 'const Array &'
Reason: cannot convert from 'int' to 'const Array'
Constructor for class 'Array' is declared 'explicit’

Fig. 10.13 | Demonstrating an exp1icit constructor. (Part 2 of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.




10.13 explicit Constructors and
Conversion Operators (cont.)

C++11: expl7c1t Conversion Operators

« As of C++11, similar to declaring single-
argument constructors exp 11c1t, you can
declare conversion operators explicit to

prevent the compiler from using them to

perform implicit conversions.

* For example, the prototype:
explicit MyClass::operator char *()
const;
 declares MyClass’s char * cast operator
eXPlTICTE.  cummommromon o e

Rights Reserved.




10.14 Overloading the Function Call
Operator ()

* Overloading the function call operator () Is powerful, because
functions can take an arbitrary number of comma-separated
parameters.

* Ina customized String class, for example, you could
overload this operator to select a substring froma String—
the operator’s two integer parameters could specify the start
locationand the /ength of the substring to be selected.

» The operator() function could check for such errors as a
start location out of range or a negative substring length.

« The overloaded function call operator must be a non-static

member function and could be defined with the first line:
String String::operator()( size_t index, size_t length ) const

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



10.14 Overloading the Function Call
Operator ()

In this case, it should be a const member function because
obtaining a substring should not modify the original String object.

Suppose stringl is a String object containing the string
"AEIOU".

When the compiler encounters the expression stringl(2, 3), it
generates the member-function call

stringl.operator()(C 2, 3 )
which returns a String containing "IOU".

Another possible use of the function call operator is to enable an
alternate Array subscripting notation.

Instead of using C++’s double-square-bracket notation, such as in
chessBoardg[ row] [column], you might prefer to overload the
function call operator to enable the notation chessBoard(row,
column), where chessBoard is an object of a modified two-
dimensional Array class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.



