
10.12 Converting between Types (cont.)

• The return type of an overloaded cast operator function is
implicitly the type to which the object is being converted.

• If s is a class object, when the compiler sees the expression
static_cast< char * >(s), the compiler generates
the call

• s.operator char *()

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.12 Converting between Types (cont.)

Overloaded Cast Operator Functions

• Overloaded cast operator functions can be defined to
convert objects of user-defined types into fundamental types
or into objects of other user-defined types.

Implicit Calls to Cast Operators and Conversion
Constructors

• One of the nice features of cast operators and conversion
constructors is that, when necessary, the compiler can call
these functions implicitly to create temporary objects.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.13 explicit Constructors and

Conversion Operators

• Recall that we’ve been declaring as explicit every constructor that can
be called with one argument.

• With the exception of copy constructors, any constructor that can be
called with a single argument and is not declared explicit can be used
by the compiler to perform an implicit conversion.

• The conversion is automatic and you need not use a cast operator.

• In some situations, implicit conversions are undesirable or error-prone.
• For example, our Array class in Fig. 10.10 defines a constructor that

takes a single int argument.

• The intent of this constructor is to create an Array object containing
the number of elements specified by the int argument.

• However, if this constructor were not declared explicit it could be
misused by the compiler to perform an implicit conversion.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.13 explicit Constructors and

Conversion Operators (cont.)

• The program (Fig. 10.12) uses the Array class of
Figs. 10.10–10.11 to demonstrate an improper implicit
conversion.

• Line 13 calls function outputArray with the int value
3 as an argument.

• This program does not contain a function called
outputArray that takes an int argument.
– The compiler determines whether class Array provides a

conversion constructor that can convert an int into an Array.

– The compiler assumes the Array constructor that receives a single
int is a conversion constructor and uses it to convert the argument
3 into a temporary Array object that contains three elements.

– Then, the compiler passes the temporary Array object to function
outputArray to output the Array’s contents.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.13 explicit Constructors and

Conversion Operators (cont.)

Preventing Implicit Conversions with Single-Argument
Constructors

• The reason we’ve been declaring every single-argument constructor
preceded by the keyword explicit is to suppress implicit
conversions via conversion constructors when such conversions
should not be allowed.

• A constructor that is declared explicit cannot be used in an
implicit conversion.

• In the example if Figure 10.13, we use the original version of
Array.h from Fig. 10.10, which included the keyword
explicit in the declaration of the single-argument constructor in
line 14.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.13 explicit Constructors and

Conversion Operators (cont.)

• Figure 10.13 presents a slightly modified
version of the program in Fig. 10.12.

• When this program is compiled, the compiler
produces an error message indicating that the
integer value passed to outputArray in line
13 cannot be converted to a const Array &.

• The compiler error message (from Visual C++)
is shown in the output window.

• Line 14 demonstrates how the explicit
constructor can be used to create a temporary
Array of 3 elements and pass it to function
outputArray.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.13 explicit Constructors and

Conversion Operators (cont.)

C++11: explicit Conversion Operators

• As of C++11, similar to declaring single-
argument constructors explicit, you can
declare conversion operators explicit to
prevent the compiler from using them to
perform implicit conversions.

• For example, the prototype:
explicit MyClass::operator char *()
const;

• declares MyClass’s char * cast operator
explicit. ©1992-2014 by Pearson Education, Inc. All

Rights Reserved.

10.14 Overloading the Function Call

Operator ()

• Overloading the function call operator () is powerful, because
functions can take an arbitrary number of comma-separated
parameters.

• In a customized String class, for example, you could
overload this operator to select a substring from a String—
the operator’s two integer parameters could specify the start
location and the length of the substring to be selected.

• The operator() function could check for such errors as a
start location out of range or a negative substring length.

• The overloaded function call operator must be a non-static
member function and could be defined with the first line:

String String::operator()(size_t index, size_t length) const

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.14 Overloading the Function Call

Operator ()
• In this case, it should be a const member function because

obtaining a substring should not modify the original String object.

• Suppose string1 is a String object containing the string
"AEIOU".

• When the compiler encounters the expression string1(2, 3), it
generates the member-function call

string1.operator()(2, 3)
• which returns a String containing "IOU".

• Another possible use of the function call operator is to enable an
alternate Array subscripting notation.

• Instead of using C++’s double-square-bracket notation, such as in
chessBoard[row][column], you might prefer to overload the
function call operator to enable the notation chessBoard(row,
column), where chessBoard is an object of a modified two-
dimensional Array class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

